KeplerDataset#
Configuration class for Kepler.gl datasets.
- class graphistry.kepler.KeplerDataset(raw_dict: Dict[str, Any])#
- class graphistry.kepler.KeplerDataset(raw_dict: None = None, *, id: str | None = None, type: Literal['nodes'], label: str | None = None, include: List[str] | None = None, exclude: List[str] | None = None, computed_columns: Dict[str, Any] | None = None)
- class graphistry.kepler.KeplerDataset(raw_dict: None = None, *, id: str | None = None, type: Literal['edges'], label: str | None = None, include: List[str] | None = None, exclude: List[str] | None = None, computed_columns: Dict[str, Any] | None = None, map_node_coords: bool | None = None, map_node_coords_mapping: Dict[str, str] | None = None)
- class graphistry.kepler.KeplerDataset(raw_dict: None = None, *, id: str | None = None, type: Literal['countries', 'zeroOrderAdminRegions'], label: str | None = None, include: List[str] | None = None, exclude: List[str] | None = None, computed_columns: Dict[str, Any] | None = None, resolution: Literal[10, 50, 110] | None = None, boundary_lakes: bool | None = None, filter_countries_by_col: str | None = None, include_countries: List[str] | None = None, exclude_countries: List[str] | None = None)
- class graphistry.kepler.KeplerDataset(raw_dict: None = None, *, id: str | None = None, type: Literal['states', 'provinces', 'firstOrderAdminRegions'], label: str | None = None, include: List[str] | None = None, exclude: List[str] | None = None, computed_columns: Dict[str, Any] | None = None, boundary_lakes: bool | None = None, filter_countries_by_col: str | None = None, include_countries: List[str] | None = None, exclude_countries: List[str] | None = None, filter_1st_order_regions_by_col: str | None = None, include_1st_order_regions: List[str] | None = None, exclude_1st_order_regions: List[str] | None = None)
Bases:
objectConfigure a Kepler.gl dataset for visualization.
Creates a dataset configuration that makes Graphistry data (nodes/edges) or geographic data (countries/states) available to Kepler.gl for visualization.
Common parameters (all dataset types):
- Parameters:
raw_dict (Optional[Dict[str, Any]]) – Native Kepler.gl dataset dictionary (if provided, all other params ignored)
id (Optional[str]) – Dataset identifier (auto-generated if None)
type (Optional[str]) – Dataset type - ‘nodes’, ‘edges’, ‘countries’, ‘states’, etc.
label (Optional[str]) – Display label (defaults to id)
include (Optional[List[str]]) – Columns to include (whitelist)
exclude (Optional[List[str]]) – Columns to exclude (blacklist)
computed_columns (Optional[Dict[str, Any]]) – Computed/aggregated columns for data enrichment
kwargs (Any)
For nodes type:
No additional parameters beyond common ones.
For edges type:
- Parameters:
map_node_coords (Optional[bool]) – Auto-map source/target node coordinates to edges (adds columns: edgeSourceLatitude, edgeSourceLongitude, edgeTargetLatitude, edgeTargetLongitude)
map_node_coords_mapping (Optional[Dict[str, str]]) – Custom column names for mapped coordinates. Dict mapping default names to custom names, e.g., {“edgeSourceLongitude”: “src_lng”, “edgeSourceLatitude”: “src_lat”, “edgeTargetLongitude”: “dst_lng”, “edgeTargetLatitude”: “dst_lat”}
raw_dict (Dict[str, Any] | None)
id (str | None)
type (str | None)
label (str | None)
kwargs (Any)
For countries/zeroOrderAdminRegions type:
- Parameters:
resolution (Optional[Literal[10, 50, 110]]) – Map resolution (10=high, 50=medium, 110=low)
boundary_lakes (Optional[bool]) – Include lake boundaries (default: True)
filter_countries_by_col (Optional[str]) – Column to filter countries
include_countries (Optional[List[str]]) – Countries to include
exclude_countries (Optional[List[str]]) – Countries to exclude
raw_dict (Dict[str, Any] | None)
id (str | None)
type (str | None)
label (str | None)
kwargs (Any)
For states/provinces/firstOrderAdminRegions type:
- Parameters:
boundary_lakes (Optional[bool]) – Include lake boundaries (default: True)
filter_countries_by_col (Optional[str]) – Column to filter countries
include_countries (Optional[List[str]]) – Countries to include
exclude_countries (Optional[List[str]]) – Countries to exclude
filter_1st_order_regions_by_col (Optional[str]) – Column to filter regions
include_1st_order_regions (Optional[List[str]]) – Regions to include
exclude_1st_order_regions (Optional[List[str]]) – Regions to exclude
raw_dict (Dict[str, Any] | None)
id (str | None)
type (str | None)
label (str | None)
kwargs (Any)
- Example: Node dataset
from graphistry import KeplerDataset # Basic node dataset ds = KeplerDataset(id="companies", type="nodes", label="Companies") # With column filtering ds = KeplerDataset( type="nodes", include=["name", "latitude", "longitude", "revenue"] )
- Example: Edge dataset with coordinate mapping
# Auto-map source/target node coordinates to edges ds = KeplerDataset( type="edges", map_node_coords=True )
- Example: Countries with computed columns
# High-resolution countries with aggregated metrics ds = KeplerDataset( type="countries", resolution=10, computed_columns={ "avg_revenue": { "type": "aggregate", "computeFromDataset": "companies", "sourceKey": "country", "targetKey": "name", "aggregate": "mean", "aggregateCol": "revenue" } } )
- Example: Using raw_dict
# Pass through native Kepler.gl dataset dict ds = KeplerDataset({ "info": {"id": "my-dataset", "label": "My Data"}, "data": {...} })
- id: str | None#
- label: str | None#
- to_dict()#
Serialize to dictionary format for Kepler.gl.
- Return type:
Dict[str, Any]
- type: str | None#
Note
For the native Kepler.gl dataset format when using raw_dict, see Kepler.gl Dataset Format.
Computed Columns#
computed_columns(dict, optional)Define computed columns for data enrichment. Each computed column is added as a new column to the current dataset (the dataset where
computed_columnsis defined). The key in the dictionary becomes the new column name.Structure:
{ "new_column_name": { # The key becomes the new column name in THIS dataset "type": "aggregate", # Aggregation type "computeFromDataset": "source_dataset_id", "sourceKey": "join_column", # Column in source dataset "targetKey": "join_column", # Column in target (this) dataset "aggregate": "mean", # Aggregation function: mean, sum, min, max, count "aggregateCol": "value_column", # Column to aggregate "normalizer": "mean", # Optional: normalize by another aggregation "normalizerCol": "divisor_col", # Optional: column for normalization "bins": [0, 1, 2, 5, 10], # Optional: bin continuous values "right": False, # Optional: bin right-inclusivity "includeLowest": True # Optional: include lowest bin edge } }
Example: A countries dataset can create
avg_revenueby aggregating company revenue via country name.Computed Column Fields:
type(str): Currently supports “aggregate”computeFromDataset(str): ID of the dataset to aggregate from (the source)sourceKey(str): Join column in the source datasettargetKey(str): Join column in the target dataset (this dataset)aggregate(str): Aggregation function name as string. Common options: “mean”, “sum”, “min”, “max”, “count”, “std”, “var”, “median”, “first”, “last”, “prod”, “nunique”. See cuDF groupby aggregation docs for full list.aggregateCol(str): Column name to aggregate from the source datasetnormalizer(str, optional): Secondary aggregation function for normalization (e.g., divide mean by mean). Uses same aggregation function names asaggregate.normalizerCol(str, optional): Column for normalization denominatorbins(List[float], optional): Bin edges for discretizing continuous valuesright(bool, optional): Whether bins are right-inclusivityincludeLowest(bool, optional): Whether to include the lowest bin edge
Example#
# Aggregate data from another dataset
countries_with_stats = KeplerDataset(
id="countries-stats",
type="countries",
resolution=110,
computed_columns={
"avg_revenue": {
"type": "aggregate",
"computeFromDataset": "companies",
"sourceKey": "country",
"targetKey": "name",
"aggregate": "mean",
"aggregateCol": "revenue"
}
}
)
See Also#
Kepler.gl Dataset Format: Native Kepler.gl dataset format reference
KeplerLayer: Layer configuration
KeplerEncoding: Complete Kepler configuration
Maps & Geographic Visualization: User guide with examples