Kepler.gl Dataset Format#
Native Kepler.gl dataset configuration format reference.
When using KeplerDataset(raw_dict={...}), the dictionary should follow the native Kepler.gl dataset structure documented here.
Dataset Structure#
A Kepler.gl dataset configuration has the following structure:
{
"version": "v1",
"data": {
"id": "dataset-id", # Dataset identifier
"label": "Dataset Label", # Display label
"color": [255, 0, 0], # Optional RGB color
"allData": [...], # Array of data rows (optional)
"fields": [...] # Array of field definitions (optional)
}
}
Fields Definition#
Each field in the fields array describes a column:
{
"name": "column_name", # Column name
"type": "string", # Data type: string, integer, real, boolean, timestamp, geometry
"format": "", # Optional format string
"analyzerType": "STRING" # Analyzer type: STRING, INT, FLOAT, BOOLEAN, DATE, GEOMETRY
}
Common Field Types#
string/STRING: Text datainteger/INT: Integer numbersreal/FLOAT: Floating point numbersboolean/BOOLEAN: True/false valuestimestamp/DATE: Temporal datageometry/GEOMETRY: Spatial data (GeoJSON)
Examples#
Basic Dataset#
from graphistry import KeplerDataset
dataset = KeplerDataset({
"version": "v1",
"data": {
"id": "cities",
"label": "City Locations",
"color": [255, 140, 0]
}
})
Dataset with Fields#
dataset = KeplerDataset({
"version": "v1",
"data": {
"id": "points",
"label": "Points of Interest",
"fields": [
{"name": "name", "type": "string", "analyzerType": "STRING"},
{"name": "latitude", "type": "real", "analyzerType": "FLOAT"},
{"name": "longitude", "type": "real", "analyzerType": "FLOAT"},
{"name": "count", "type": "integer", "analyzerType": "INT"},
{"name": "timestamp", "type": "timestamp", "analyzerType": "DATE"}
]
}
})
See Also#
KeplerDataset: KeplerDataset class API
Kepler.gl Layer Format: Kepler.gl layer format